Computational Geometry Homework 2

Administration

Your answers should be typeset in LaTeX or some equivalent and submitted as a pdf. The LaTeX sourse of these questions may be found on the course website under "homework". Name your files as "1_your_last_name.pdf", all lowercase letters. For example, I would call mine 1_sheehy.pdf.

Due: Before class, Wednesday, October 22, 2014.
Email Solutions to donald@engr.uconn.edu

1 The HalfEdge Data Structure

For this question, assume that you have a triangulation T of a point set P that is represented by a halfedge data structure. This data structure has a HalfEdge class that supports the following operations on a half edge h.

- $h . v$ is the vertex at the tail of h.
- h.next is the next half edge (going counterclockwise around the face).
- h.prev is the previous half edge (going backwards around the face).
- h.twin is the twin half edge on the other side of the edge.

When creating a new HalfEdge, one passes the vertex of the tail.
1.1 Given a halfedge h, some code below has been started to implement an edge flip. Finish the code by updating all the relevant pointers in the data structure.
flip (h) \{
$e=h . p r e v$
$f=$ h.next
$g=$ h.twin.prev
$i=$ h.twin.next
$j=$ new HalfEdge ($g . v$)
$k=$ new HalfEdge (e.v)
...
\ldots
\}
1.2 Using the same style as the previous question, show how to implement the three-way split of the triangle represented by a HalfEdge h by a new point p inside that triangle. That is, the input to the mehtod should be a HalfEdge and a Vertex.

2 Testing the Local Delaunay Condition

2.1 Suppose that you have a triangulation T of a point set P that is represented by a halfedge data structure as in the previous problem. Let $e=\overline{a b}$ be an edge of T and let c and d be vertices of P such that the triangles containing e are $\triangle a b c$ and $\triangle a b d$. Recall e is locally Delaunay (LD) if it is an edge of the Delaunay triangulation T^{\prime} of the four points $\{a, b, c, d\}$. Prove that it only requires one InCircle test to check if e is LD.
2.2 Show how to implement the LD test using the HalfEdge data structure. That is, for a given halfedge, return true iff it is LD.

3 More on Delaunay Triangulation

3.1 Given a set of points P in general position, the Gabriel graph of P is the set of edges $\overline{a b}$ such that the circle with diameter $\overline{a b}$ contains no point of P in its interior. Prove that the Gabriel Graph is always a subset of the Delaunay triangulation.
3.2 The Euclidean Minimum Spanning Tree T of a point set P is the connected graph whose vertices are the points of P and such that

$$
\sum_{\overline{a b} \in T}\|a-b\|
$$

is minimized. Prove that the Euclidean Minimum Spanning Tree of P is a subset of the Delaunay triangluation of P. Again, assume P is in general position. Hint: Consider a well-known greedy algorithm for mininum spanning trees.

