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1 Linkages and Stresses

Today we’re going to go back into history a little bit. We’ll talk a bit about
some great geometric ideas from the 19th century that are especially applicable
to modern applications in computational geometry.

When people shifted from building bridges out of stone to building them out
of metal, there was a fundamental change in the engineering involved. With
stone, all the strength is compressive, so you need to see what force pushes
where. With iron and steel, there is the introduction of pulling. For simplicity,
we will be working in a 2-dimensional world. The systems of pushing and pulling
elements is called a linkage and is defined as follows.

Definition 1.1. A linkage is a graph with vertices embedded in the plane and
edges represented as straight lines. The graph may not be planar and even if it
is, the drawing may have crossings. When the graph is planar and the drawing
has no crossings, we will call it a planar linkage.

Definition 1.2. A stress on a linkage is an assignment of weights to the edges of
a linkage. These weights may be positive or negative and they will be interpreted
as spring constants, i.e. the force exerted on the endpoints will be the weight
times the length of an edge.

Often we are interested in understanding how the stress on a linkage will
move it. You may recognize a connection to Tutte’s algorithm here. Recall that
in Tutte’s algorithm, the weights on the interior edges are all 1 and the stress
pulls the graph into a nice straight-line drawing. There is a slight difference in
that Tutte’s algorithm didn’t really account for the stresses on the outer face.
We will see this difference crop up again soon.

The other type of stress we are interested in is the one where nothing moves.
This is similar to the final state of Tutte’s algorithm, when the linkage has
reached a kind of equilibrium.

Definition 1.3. An equilibrium stress on a linkage is a stress such that for each
vertex, the sum of the forces induced by its incident edges is zero, assuming the
weights are interpreted as spring constants.
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2 Lifting Planar Graphs and the Maxwell-Cremona

Correspondence

In 1864, James Clerk Maxwell developed a theory of reciprocal diagrams, a
special kind of planar graph dual. He showed that these reciprocal diagrams
were very useful for understanding the equilibrium stresses of a planar linkage.
Combined with the work of Luigi Cremona, an Italian mathematician working
around the same time, we now have what is known as the Maxwell-Cremona

Correspondence, which relates the equilibrium stresses of a planar graph to
the liftings of that graph. So what’s a lifting?

Definition 2.1. A lifting of a planar straight-line drawing of a graph is an
assignment of heights to the vertices such that the vertices of every face are
coplanar in R3 (i.e. faces stay flat).

The condition on faces staying flat after the lifting applies also to the outer
face, a condition that will be crucial.

3 A Map for Today

We’re not going to prove the Maxwell-Cremona Correspondence today. Instead,
we’re going to take a bit of a tour through some related ideas and cool math.
On the way, we’ll see some more connections to things we’ve already seen and
set ourselves up for some other applications that will crop up later in the course.

We’ll start with a continuation of our historical rummaging, by talking about
a fundamental geometric problem that came out of steam engine design. This
will allow us to do a kind of steampunk computational geometry, without dress-
ing up like idiots.

Then, we connect this to a physical model of computation over the complex
numbers. This will lead us to a brief discussion of stereographic maps and
polarity of polytopes.

Finally, we’ll formally define what we mean by a reciprocal diagram and
map out the structure of the proof of the M-C Correspondence. Then, we’ll go
through that proof next time.

4 Making straight lines

If you’re designing a steam engine, you have a simple geometric problem to
solve: how to transform the linear motion of the piston to a rotational motion
of the wheels. Now, you could come up with a naive solution that uses the fact
that the piston is constrained to it’s chamber. However, if you do that, you will
quickly wear out the chamber. What you need is a linkage that will keep the
piston moving in a straight-line, even if there wasn’t a chamber.
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James Watt came up with a linkage that comes very close to making a
straight-line. It was close enough to work in a steam engine, but it had a slight
wobble to its motion.

This problem got around and it was an open question as to whether such
a linkage could even exist. In 1864, incidentally, the same year that Maxwell
published his work on equilibrium stresses, a Frenchman names Peaucellier came
up with a very simple linkage that produced a perfectly straight line from a
circular motion.

Peaucellier’s linkage was a big hit. According to legend, the great mathe-
matician Sylvester presented a model of the linkage to Lord Kelvin. Kelvin was
so mesmerized by the simple mechanism that he declared it “the most beautiful
thing I have ever seen.”
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Figure 1: This is Peaucellier’s linkage implemented in Cinderella.

5 Physical computation over C

To understand the workings of the Peaucellier linkage, let’s start with some even
simpler linkages. We imagine that some of the vertices in the linkage are pinned
down in the plane while the others can move, subject to the constraint that the
lengths of the edges don’t change. There are many linkages that just have one
degree of freedom. That is, if we more one free vertex, the motion of the rest of
the linkage is fixed. In such a linkage, we can designate one vertex as the input
and one as the output. If we treat the plane as the complex numbers, linkages
of this form compute a function C → C.

Let’s take a couple easy examples. For example, we can easily do addition
by a constant. It is also not too hard to do multiplication by a real number,
though we need a different setup for multiplying by negative numbers or numbers
between 0 and 1.

Another computation we could do is called reflection around the circle. It
computes the function, f(z) = z

|z|2 , where |x + yi| =
√

x2 + y2 is the norm of

z = x+yi. You may also recognize this as a core part of the Peaucellier linkage.
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This makes sense because reflection about the circle is used to define the
stereographic map, which is the mathematical way of turning a circle into a line.
Let C be the circle of diameter 1 centered at the point (0,− 1

2
) and let L be the

line y = −1. We can define the stereographic map s : C \{(0, 0} → L as follows.

s(z) =
z

|z|2

This is the same function that our linkage computed but we would do well to
unpack the geometric intuition a little. Suppose a point z is on C and is not
the origin. We can draw a line through 0 and z that intersects L. The point
where this line intersects L is exactly s(z).

The part of the Peaucellier linkage beyond just reflection around the circle
constrains the input vertex to stay on the circle. Thus giving us a physical
computer for the stereographic map that also makes for a better steam engine.

6 Polarity

You may note that the Stereographic map is well defined in any dimension and
has the same form. You may have encountered the Stereographic map before. It
is often invoked to argue that the graphs formed by the vertices and edges of the
platonic solids are planar. In fact, if we look at the planar graphs formed in this
way, we get a natural pairing of the platonic solids by planar graph duality. The
cube is dual to the octahedron, the dodecahedron is dual to the icosahedron,
and the lonely tetrahedron is paired with itself.

We can also achieve this duality via a different operation known as polarity.
Given a (possibly infinite) set A ⊂ Rd the polar of A, denoted Ao is defined

as follows.
Ao = {x ∈ R

d : a · x ≤ 1, ∀a ∈ A}.

To make this a little simpler, note that the polar of a point p is a halfspace.
In particular, it is the halfspace normal to p (treated as a vector) that contains
0 and has p

|p|2 on its boundary. Again, reflection around the circle pops up.

You could also check that the polar of a half-space is a point. Moreover, the
polar of a collection of points is the intersection of halfspaces. There are many
interesting facts about polarity, but for now, we’ll just state that the polar of
a polytope P is another polytope, not coincidentally referred to as the polar
polytope of P . The polytopes P and P o have the usual duality relationship
between faces of dimension k and faces of dimension d − k − 1.

It is also possible to understand the dual relationship between the Delaunay
triangulation and the Voronoi diagram as a kind of polarity. To do this, we
would have to slightly modify our definition of polarity to do reflection around
the paraboloid instead of reflection around the unit circle (sphere). It is also
possible to ralize this duality using the standard polarity definition given above
if you replace the parabolic lifting that we used in class with a stereographic
map.
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Unfortunately, we don’t really have time to prove all this neat facts, but
they are beautiful and I thought you should at least see them.

7 Reciprocal Diagrams and the Maxwell-Cremona

Correspondence

Definition 7.1. A reciprocal diagram of a drawing of a planar graph G is a
linkage whose graph is dual to G and all coresponding edges are perpendicular.

We should stop for a second and recall that the Delaunay triangulation and
Voronoi diagram have this dual relationship. The Voronoi edges are on the
perpendicular bisectors of the points on the corresponding Delaunay edge.

Next time we will see two important correspondences which together imply
the Maxwell-Cremona correspondence.

The first is a correspondence between equilibrium stresses and reciprocal
diagrams. The second is a correspondence between liftings and reciprocal dia-
grams. Composing these two correspondences gives us the following.

Theorem 7.1 (Maxwell-Cremona Correspondence). There is a natural corre-
spondence between the equilibrium stresses of a planar linkage and the liftings
of that linkage.
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