Due: Before class on April 15, 2014

Homework 7

- 1. Did you do the reading? YES/NO/SORTA
- 2. Did you do the reading before class? YES/NO/SORTA
- 3. How long did you spend on this homework (rounding up)? ____hours.

1 Time Complexity Classes

1.1 The book asserts that every language that can be decided in time $o(n \log n)$ time is regular. Use this fact to prove that $\text{TIME}(n \log(\log n)) \setminus \text{TIME}(n) = \emptyset$.

2 The Ozgur Machine does not exist!

We saw in class (and its also in the book) that the acceptance problem for Turing machines is undecidable. That is, the language

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM and } w \in L(M) \}$$

is undecidable. We will use this theorem to show that there cannot exist a Turing machine that can reliably decide whether or not you submitted correct answers to some of the problems from homework 5. Recall that the language A was defined as

$$A = \{(0 \cup 1)^a (1 \cup 2)^b (2 \cup 3)^c \mid a > b\}.$$

In homework 5, you were asked to give a Turing machine to recognize A. Consider the language of correct answers:

$$Z = \{ \langle M \rangle \mid M \text{ is a TM and } L(M) = A \}.$$

We will show that Z is undecidable. At least one answer T_A was given in the solutions that decides A. Suppose for contradiction that there exists a Turing machine Ozgur that can decide Z. Then, we will create a new Turing machine T that works as follows.

 $T = \text{On input } \langle M, w \rangle$

1. Write the description of a TM R that works as follows

$$R = \text{On input } x$$

Run T_A on x.

If T_A accepts x then accept.

If T_A rejects x then run M on input w and accept if M does

2. Run Ozgur on input $\langle R \rangle$, accept if Ozgur rejects and reject if Ozgur accepts.

Note that the machine R has the machine M and the string w "hard-coded" into it. These are not part of the input to R.

- **2.1** Is R necessarily a decider? Why or why not? Recall that a decider always terminates.
- **2.2** Is T a decider? Why or why not?
- **2.3** What is L(R) in terms of w, A, Σ , and L(M)?

2.4 Prove that T decides A_{TM} .

Finally, after proving in 2.4 that T decides A_{TM} , we can conclude that OZGUR cannot exist, because there cannot be a TM that decides A_{TM} .

3 Big-O and little-o

Let f and g be functions such that $f(n) = O(n^2)$ and g(n) = O(n).

- **3.1** Let $h_1(n) = f(n) + g(n)$. Is it necessarily true that $h_1(n) = O(n^2)$? Give a proof.
- **3.2** Let $h_2(n) = f(n)g(n)$. Is it necessarily true that $h_2(n) = o(n^3 \log n)$? Give a proof.
- **3.3** Let $h_3(n) = \frac{f(n)}{g(n)}$. Is it necessarily true that $h_3(n) = O(n)$? Give a proof.
- **3.4** Let $h_4(n) = 2^{O(\log(\log n))}$. Is it necessarily true that $h_4(n) = O(\log n)$? Give a proof.