
CCCG 2008, Montréal, Québec, August 13–15, 2008

Achieving Spatial Adaptivity while Finding Approximate Nearest Neighbors

Jonathan Derryberry Don Sheehy Daniel D. Sleator Maverick Woo∗

Abstract

We present the first spatially adaptive data structure that
answers approximate nearest neighbor (ANN) queries
to points that reside in a geometric space of any con-
stant dimension d. The Lt-norm approximation ratio
is O(d1+1/t), and the running time for a query q is
O(d2 lg δ(p, q)), where p is the result of the preceding
query and δ(p, q) is the number of input points in a
suitably-sized box containing p and q. Our data struc-
ture has O(dn) size and requires O(d2n lg n) preprocess-
ing time, where n is the number of points in the data
structure. The size of the bounding box for δ depends on
d, and our results rely on the Random Access Machine
(RAM) model with word size Θ(lg n).

1 Introduction

The problem of finding the nearest neighbor to a query
point is a fundamental data structure problem with
numerous applications in areas such as computational
geometry and machine learning. Unfortunately, finding
the exact nearest neighbor seems difficult in dimensions
3 or higher as there is no known data structure that
achieves nearly-linear preprocessing time and nearly-
logarithmic query time. Hence, researchers turned to the
approximate version of the problem, achieving significant
performance gains by permitting the data structure to
return merely a near neighbor, a point whose distance
to the query is at most a constant times the distance
from the nearest neighbor.

A large number of papers have sought to improve
the performance of ANN data structures (see references
in [2]), but none has shown how nonrandom patterns
in query sequences might be exploited to improve run-
ning time. Examples of exploiting such nonrandomness
abound in the 1D version of the exact nearest neighbor
problem, for which data structures whose query perfor-
mance depends upon the locality of queries in space
and/or time have long been known (see references in [4]).
Results in 2D, however, have only started to appear in
recent years. For example, [12, 3] have shown how to
exploit temporal locality in a random query sequence if

∗Department of Computer Science, Carnegie Mellon Univer-
sity, jonderry,dsheehy,sleator,maverick@cs.cmu.edu. The last
author was sponsored by the National Science Foundation un-
der contract no. EIA-9706572, CCR-0122581 and CNS-0435382
and Appalachian Regional Commission under contract no. CO-
14574. This work was partially supported by the National Science
Foundation under grant number CCF-0635257.

the distribution is known, whereas [10, 13] have shown
how to achieve dynamic-finger-like bounds in the 2D
point search and point location problems.

Contribution. We extend ideas from [14, 9] to present
the first ANN data structure to achieve, in any constant
dimension, a provable speedup according to the degree
of spatial locality in the query sequence. More specif-
ically, in the RAM model with word size w = Θ(lg n),
we are given a set P of n points in d-dimensional space,
each represented as a tuple of d words. We show how
to preprocess P in O(d2n lg n) time to build an O(dn)-
sized data structure that serves a sequence of queries for
which each query q costs O(d2 lg δ(p, q)), where p is the
result of the preceding query and δ(p, q) is the number
of input points in a suitably-sized box containing p and
q. The Lt-norm approximation ratio is O(d1+1/t), and
the bounding box size for δ depends on d. While our
description of the data structure does not include inser-
tions or deletions, they are straightforward to support as
long as spatially adaptive time bounds are not required.

Outline. Section 2 briefly discusses related work, in-
cluding results in 1D on which we rely as a black box
and Section 4 discusses the notion of “distance” we use
in this paper in the context of other notions of distance
that have been used by previous spatially adaptive data
structures. We describe and analyze the data structure
and the search algorithm in Sections 5 and 6 and we
conclude in Section 7.

2 Related Work

Finger Search in 1D. There exists a variety of 1D
nearest neighbor data structures that exploit spatial
locality in a query sequence. Here we merely highlight
two optimal results and we refer the reader to these
two papers for references to previous works. Let q be
the number of points between the previous and current
queries. For Pointer Machines, Brodal et al. [6] have
designed finger search trees with O(lg q) query time and
O(1) update time. With the added power of the RAM
model, Andersson and Thorup [1] have shown how to
achieve a query time of O(

√
lg q/ lg lg q). The running

times above are all worst-case.
In this paper, we will be making use of a 1D finger

search data structure as a black box. Any finger search
data structure can be used as long as it does not re-
structure during a search. (This requirement will be
explained in Section 5.) When updates are not required,

20th Canadian Conference on Computational Geometry, 2008

we can simply use a sorted array as our black box and
perform finger search in the obvious manner. Only when
updates are required do we need to employ more sophis-
ticated data structures such as level-linked 2-3 trees by
Brown and Tarjan [7] or several other finger search data
structures that were designed later.

Finger Search in 2D. Though most of the work on
spatially adaptive data structures is restricted to 1D,
there has been some recent work on developing such
distance-sensitive data structures in 2D. In particular,
Demaine et al. [10] have shown how to preprocess a set
of points P to permit a sequence of membership queries
to points in P with a time bound of O(lg δPPS (p, q)),
where δPPS (p, q) represents the distance between the
previous query p and the current query q as measured
by counting the number of points in a triangle-shaped
region that contains both p and q. Subsequently, Iacono
and Langerman [13] have shown how to achieve a similar
distance-sensitive bound for point location in 2D.

Previous Work on ANN. The literature on the ANN
problem is rich and we refer the reader to [11, Chapter
11] for numerous references. However, in the next section
we will expand on the two previous works [14, 9] that
are most relevant to this paper.

3 ANN and Space Filling Curves

Space filling curves (SFCs) provide a natural mapping
from a high-dimensional space to an 1D curve and the
ordering of points on SFCs has been used extensively as
a meaningful order of points. In particular, the problem
of finding ANNs and related proximity problems can be
solved by SFC methods [14, 9]. Here we will describe a
well-known algorithm for computing ANNs using SFCs
from Liao et al. [14]. This algorithm is based on a similar
algorithm that uses quadtrees. The quadtree version is
due to Chan [8] and can be seen as a derandomization
of an algorithm by Bern [5].

Let us consider a particular SFC known as the Z-order
curve. Points are easily mapped onto this curve by a
simple bit shuffling operation. Let pi:j represent the jth
bit of the ith coordinate of point p ∈ Zd, assuming that
each coordinate can be represented in a w-bit word. The
shuffle operation σ : Zd → Z is defined as the binary
number σ(p) = p1:w · · · pd:w · · · p1:1 · · · pd:1, which we call
the “shuffled value of p”. For any pair of points p, q,
we can order p and q on the curve by comparing their
shuffled values. For a set of points P = {p1, . . . , pn},
their Z-order is exactly their order in an in-order traversal
of a quadtree constructed from the points in P . Figure 1
depicts this relationship and gives some intuition for the
name “Z-order”.

The algorithm for ANN is as follows. Observe that
the Z-order depends on the placement of the origin and
that for a particular Z-order, the nearest neighbor to a

Figure 1: The in-order traversal of quadtree leaves cor-
responds to the ordering of the points on Z-order curve.

query is not necessarily the predecessor or the successor.
Fortunately, one can show that there is a shift of the
origin such that either the predecessor or the successor in
the resulting Z-order is an ANN. In particular, consider a
set of s shifts v(j) = (j/s, . . . , j/s) for j = 0, 1, . . . , (s−1)
and let s be (d+ 1). Construct a set of search structures,
one for each of the (d + 1) shifts. We compare p to q
under the shift v(j) by comparing σ(p+v(j)) to σ(q+v(j))
and insert each input point into each of the structures.
For a query q, do all (d+ 1) searches for q and return
the closest of the results. This algorithm gives an O(d

3
2)

approximation in L2 as shown in [8].

Chan’s Comparison Procedure. We remark that in
both the algorithm above as well as our algorithm in
Section 5, we merely need the ability to compare the shuf-
fled values. This can be done using a clever comparison
procedure by Chan [9] that, given two points, compares
their shuffled values using O(d) exclusive-or word opera-
tions. This technique allows us to avoid computing and
storing shuffled values at a cost of O(d) slowdown and
also mitigates the concern that a shuffled value may not
fit inside a word.

4 Combinatorial Distance Measures for Point Sets

The goal of a geometric data structure supporting the
dynamic finger property is to be distribution-sensitive
so that sequences of geometrically close queries can be
answered quickly. The ideal guarantee is that a query
for a point q following a query for a point p takes time
O(lg dist(p, q)) for some distance measure dist. For 1D
problems, the distance between two points is simply the
number of points between them. Unfortunately, such a
combinatorial distance measure has no ready analogue
in geometric spaces of dimension 2 or higher.

As the purpose of the finger p is to limit the search
space to points that are geometrically close to p and q,
a natural way to define a distance measure is to count
the number of points in a suitable restriction of the
search space. This intuition guided previous works in
geometric finger search to use the notion of a region
counting distance, in which dist(p, q) is defined as the
number of input points in some carefully defined region
containing both p and q [10, 13]. Formally, a region
counting distance is defined by a triple (x, y,R) where

CCCG 2008, Montréal, Québec, August 13–15, 2008

x and y are points and R is a region whose membership
can be decided in O(1) time. Given this triple, dist(p, q)
is the number of points in the image of R under the
affine transformation that takes x to p and y to q. The
two previous works [10, 13] only applied to 2D where
this transformation is unique.

Here we propose a new combinatorial distance measure
similar to a region counting distance. Let c be a constant
to be chosen later and let U be some axis-aligned box
containing p and q with side length c|p − q|∞. The
distance is defined as δ(p, q) = |P ∩U∗|, where U∗ is the
choice among all such U that maximizes the distance
measure. It should be clear that the points counted all
have the desired property that their distances from p and
q are bounded by a constant times the distance between
p and q and therefore we have a distance measure that
captures a notion of geometric locality in any dimension.

5 The Data Structure and Search Algorithm

Compared to the data structure in Section 3, our data
structure uses (2d+1) shifts versus (d+1), and therefore
consists of (2d + 1) 1D structures. Each of the 1D
structures stores pointers to the input points in its nodes
using the Z-ordering defined by the corresponding shift.
Note that we do not store the keys, which are the shuffled
values of the shifted points. Instead, we use Chan’s
comparison procedure on the points directly. For each
input point xi, we also maintain a circularly linked list
comprising the (2d+1) nodes that represent xi in the 1D
structures. The preprocessing time is O(d2n lg n) since
there are (2d+ 1) 1D structures to build, each requiring
O(n lg n) comparisons that use O(d) word operations
each. The size of the data structure is O(dn).

Given a query q, a search for an ANN is straightfor-
ward. Let p be the result of the previous query. We
perform (2d+ 1) finger searches from p in parallel, one
for each shift. Let x1, . . . , xd+1 be the results found
by the first (d+ 1) searches that complete. We return
the xi that is closest to q as an ANN and abandon the
other d searches. Finally, we update the 1D structures
to prepare for the next query by re-establishing their
finger pointers to point at xi using the circularly linked
list associated with xi. (The reason why we do not allow
restructuring during a search in the 1D structures is to
support the abandon and the re-establish steps.)

6 Algorithmic Guarantees

6.1 Centering Points in Quadtree Boxes

Chan [8] proved that (d+1) shifts of the quadtree suffice
to guarantee that for any point p and scale r, there is a
shift that puts p roughly in the center of the quadtree
square corresponding to that shift at scale r. This is the
key lemma to prove that some quadtree will return an
O(d

3
2)-ANN.

For finger search to work, we need it to be true that
for two different points, p, p′ and two different scales r, r′,

there is a shift that puts p near the center of a square
at scale r and p′ near the center of a square at scale
r′. Two guarantees rather than one are needed so that
both the finger search will run quickly and the result
will be a good approximation. The usual (d+ 1) shifts
would suffice if we were willing to accept only one of
these guarantees, but we will show that (2d+ 1) shifts
suffice to get both.

To maintain consistency with the work we are ex-
tending, we assume the input points are scaled to finite
precision real numbers in [0, 1)d.

Say that p is α-central at scale r if for all i = 1, . . . , d,
we have (pi + α) mod r ≥ 2rα. The following is a slight
extension of [8, Lemma 3.3] and its proof follows the
same pattern as the original.

Lemma 1 Let s > d be an odd integer representing the
number of shifts v(j) = (j

s , . . . ,
j
s), j = 0, . . . , (s − 1).

For a point p ∈ [0, 1)d, and scale r = 2−`, there are at
most d shifts v(j) such that p+ v(j) is not 1

2s -central at
scale r.

Proof. We will prove that at most one shift is bad
for each dimension. Formally, we prove that for each
i ∈ {1, . . . , d}, there is at most one shift v(j) such that(

pi +
j

s
+

1
2s

)
mod r <

r

s
, (1)

or equivalently, by multiplying through by s/r,(
2`spi + 2`j + 2`−1

)
mod s < 1. (2)

Suppose on the contrary that we have distinct j, j′ ∈
{0, . . . , s − 1} for which (2) holds. Letting z = 2`spi +
2`−1, we have (z+2`j) mod s < 1 and also (z+2`j′) mod
s < 1. So, for integers q, q′ and remainders 0 ≤ x, x′ < 1,
the above inequalities imply z + 2`j = qs + x, and
z+2`j′ = q′s+x′. It follows that 2`(j− j′)− (q−q′)s =
x−x′. Since the LHS here is an integer and 0 ≤ x, x′ < 1,
it must be that in fact x = x′ and thus 2`j ≡ 2`j′

(mod s). We can divide both sides of this congruence
by 2` because 2` and s are relatively prime (s is odd).
The result is j = j′, a contradiction. �

6.2 Query Time and Approximation Ratio

To analyze query time we must first choose the constant
for our distance measure. Say δ(p, q) = |{x ∈ P : |x −
p|∞ ≤ (8d+ 4)|p− q|∞}|.

Using Lemma 1 for a scale r, we know that of the
(2d+ 1) shifts, p is 1

4d+2 -central in at least (d+ 1) shifts.
In particular, we are interested in the smallest scale
r ≥ (4d + 2)|p − q|∞. At this scale, p has distance at
least |p − q|∞ from the boundary of any box Bi for
which it is 1

4d+2 -central. So q is also in each of these
(d+ 1) boxes Bi. The SFC touches each point in a box
B before leaving, so each finger search will take time

20th Canadian Conference on Computational Geometry, 2008

O(d lg |P ∩Bi|). As all points in P ∩Bi are counted in
δ(p, q), we see that (d+ 1) different shifts are guaranteed
to finish in O(d2 lg δ(p, q)) time. Choosing the best of
these (d+ 1) answers can be done in O(d2) time. Thus,
the total running time is O(d2 lg δ(p, q)).

Second, we need to show that the returned point is
indeed a good ANN and this also follows from Lemma 1.
Let q∗ be the nearest neighbor of q. The lemma implies
that at the smallest scale r′ ≥ (4d+ 2)|q − q∗|∞, there
can be at most d shifts for which q is not 1

4d+2 -central.
Therefore one of the (d+1) shifts that finished searching
found q in a box for which it is central at scale r′. The
search returned a point x in that box, and thus |q−x|∞ <
(8d+4)|q−q∗|∞. So, x is an O(d)-ANN in the L∞ norm
and therefore an O(d1+1/t)-ANN in the Lt norm.

7 Concluding Remarks

In this paper, we showed how to achieve spatial adaptiv-
ity for the ANN problem in any constant dimension by
extending prior work based on SFCs. Here we describe
an enhancement and discuss some future research.

Using the Quadtree to Speed Up Search. Recall that
the Z-ordering of the input points corresponds to the in-
order traversal of the leaves in a quadtree. For any two
points p, q in a quadtree, there is a unique path along
the link structure. Let us call the length of this path the
quadtree distance. The quadtree distance approximates
the log of the Euclidean distance after normalization
by the empty space around p and q. One can imagine
building a quadtree that supports finger search in time
proportional to the quadtree distance by walking up and
down within the quadtree.

However, observe that even when using a compressed
quadtree, in which paths of degree two nodes of the tree
are collapsed, the quadtree distance may still be linear
in the number of input points. Furthermore, even with a
good shift, this distance could still be significantly worse
than the distance computed by the measure in Section 4.
On the other hand, it is also not hard to construct
examples in which the quadtree distance is o(lg δ(p, q)).
As an example, consider the effect of adding a dense set
of points between p and q while p and q each remains in
its own, relatively sparse region. This example not only
shows that there is no strict ordering of geometric and
combinatorial distance measures, but it also suggests
that one can exploit using both the structure of the
quadtree and our data structure to speed up searches.

Future Work. A good enhancement to make in the
future would be to improve the approximation ratio to
(1 + ε), though it is not clear how to do this without the
exponential blowup incurred by analogous enhancements
to other SFC-based data structures for ANN. A more
modest enhancement would be to shrink the distance
measure so that the distance between two successive
queries to p and q would be the number of points inside

a smaller box that more tightly bounds p and q. We can
achieve this to a degree by using a constant number of
shifts independently in each dimension at the expense of
an exponential factor in d to space usage, but perhaps
there other methods. We may also try to more thor-
oughly exploit the power of RAM. For example, if we use
the finger search structure by Andersson and Thorup [1]
as the 1D structure, then we get an improved running
time. However, we do not know how to avoid computing
the shuffled values explicitly when using this. Finally,
a general direction for future work would be to extend
other ANN techniques—or even algorithms for serving
exact nearest neighbor queries in high dimensions—to
allow spatial adaptivity, temporal adaptivity, or a com-
bination of the two.
References

[1] A. Andersson and M. Thorup. Dynamic ordered sets
with exponential search trees. Journal of the ACM,
54(3):Article 13, 2007.

[2] A. Andoni and P. Indyk. Near-optimal hashing algo-
rithms for approximate nearest neighbor in high di-
mensions. Communications of the ACM, 51(1):117–122,
2008.

[3] S. Arya, T. Malamatos, and D. M. Mount. A simple
entropy-based algorithm for planar point location. ACM
Transactions on Algorithms, 3(2):Article 17, 2007.

[4] M. Badoiu, R. Cole, E. D. Demaine, and J. Iacono.
A unified access bound on comparison-based dynamic
dictionaries. Theoretical Computer Science, 382(2):86–
96, 2007.

[5] M. Bern. Approximate closest-point queries in high
dimensions. Information Processing Letters, 45(2):95–
99, 1993.

[6] G. S. Brodal, G. Lagogiannis, C. Makris, A. K. Tsaka-
lidis, and K. Tsichlas. Optimal finger search trees in
the pointer machine. Journal of Computer and System
Sciences, 67(2):381–418, 2003.

[7] M. R. Brown and R. E. Tarjan. Design and analysis
of a data structure for representing sorted lists. SIAM
Journal of Computing, 9(3):594–614, 1980.

[8] T. M. Chan. Approximate nearest neighbor queries re-
visited. Discrete & Computational Geometry, 20(3):359–
373, 1998.

[9] T. M. Chan. Closest-point problems simplified on the
RAM. In Proceedings of the 13th ACM-SIAM Sympo-
sium on Discrete Algorithms, pages 472–473, 2002.

[10] E. D. Demaine, J. Iacono, and S. Langerman. Proximate
point searching. Computational Geometry, 28(1):29–40,
2008.

[11] S. Har-Peled. Geometric Approximation Algorithms.
(working draft), 2008.

[12] J. Iacono. Optimal planar point location. In Proceed-
ings of the 12th ACM-SIAM Symposium on Discrete
Algorithms, pages 340–341, 2001.

[13] J. Iacono and S. Langerman. Proximate planar point
location. In Proceedings of the 19th ACM Symposium
on Computational Geometry, pages 220–226, 2003.

[14] S. Liao, M. A. Lopez, and S. T. Leutenegger. High
dimensional similarity search with space filling curves.
In 17th International Conference on Data Engineering,
pages 615–622, 2001.

