
CCCG 2020, Saskatoon, Canada, August 5–7, 2020

A Simple Algorithm for kNN Sampling in General Metrics∗

Kirk P. Gardner† and Donald R. Sheehy‡

Abstract

Finding the kth nearest neighbor to a query point is a
ubiquitous operation in many types of metric compu-
tations, especially those in unsupervised machine learn-
ing. In many such cases, the distance to k sample points
is used as an estimate of the local density of the sam-
ple. In this paper, we give an algorithm that takes a
finite metric (P,d) and an integer k and produces a
subset S ⊆ P with the property that for any q ∈ P ,
the distance to the second nearest point of S to q is
a constant factor approximation to the distance to the
kth nearest point of P to q. Thus, the sample S may
be used in lieu of P . In addition to being much smaller
than P , the distance queries on S only require finding
the second nearest neighbor instead of the kth nearest
neighbor. This is a significant improvement, especially
because theoretical guarantees on kth nearest neighbor
methods often require k to grow as a function of the
input size n.

1 Introduction

Subsampling is a fundamental step in many large scale
data analysis problems. The goal is that the distribu-
tion of the subsample M ⊂ P resembles the distribution
on the whole data set, P . On the one hand, preserving
purely statistical properties is often achieved by random
sampling. This paper, on the other hand, considers pre-
serving metric properties of a subsample. Specifically,
we want a sample where the distance to the second near-
est neighbor in M is approximately the distance to the
kth nearest neighbor in P . We call this a kth nearest
neighbor sample and it balances between competing de-
mands of representing the underlying distribution and
the underlying metric.

Figure 3 shows a kth nearest neighbor sample of a
collection of points in the plane. The points are 5 times
denser on the right half and there are correspondingly
more points in the sample on that side. Figure 1 shows
a random sample of the same point set with the same
number of points sampled. The random sample also has

∗This work was partially supported by the NSF under grants
CCF-1464379, CCF-1525978, and CCF-1652218.
†Department of Computer Science, North Carolina State Uni-

versity, kpgardn2@ncsu.edu
‡Department of Computer Science, North Carolina State Uni-

versity, don.r.sheehy@gmail.com

Figure 1: A random sample.

Figure 2: A greedy sample.

Figure 3: A kth nearest neighbor sample.

more points on the denser half, but it has more variabil-
ity in the distance between samples; some are virtually
on top of each other. The greedy sample (Figure 2) is a
standard way to produce a uniform sample at a particu-
lar scale, but that scale does not vary with the density.
In this sense, the kNN sample achieves a balance be-
tween the random sample and the uniform (i.e. greedy)
sample.

In prior work [7], we showed how a variation of De-
launay refinement can be used in the plane to compute
such a sample. In this paper, we prove that a simple
algorithm can compute a kNN sample in any metric
space. Then, we show how data structures and ideas
from nearest neighbor search can be adapted to speed
up the computation.

The algorithm is presented in its simplest form in
Section 3. There, we prove upper and lower bounds
on the kth nearest neighbor distance in terms of the

32nd Canadian Conference on Computational Geometry, 2020

2nd nearest neighbor distance in the sample. Then, in
Section 4, we describe a neighborhood graph structure
adapted from Clarkson [3] that we use to speed up the
local search step of the algorithm. In Section 5, we put
all these pieces together to bound the overall running
time. We report on our open source implementation
and give some demonstrations of the code in action in
Section 7. Finally, in Section 8, we propose some open
problems that remain.

1.1 Related Work

The distance to the kth nearest neighbor has been used
for a long time as a density estimator (see Biau and
Devroye [1]). It has also been used in pointwise esti-
mates of the local density in metric measure spaces (see
Cutler and Dawson [5] and the survey by Clarkson [4]).
There are many data structures that compute kth near-
est neighbors efficiently, perhaps the fastest in practice
are the Faster Cover Trees of Izbicki and Shelton [11].
There has also been theoretical work by Har-Peled and
Raichel on a general framework for computing aggregate
statistics like the kth nearest neighbor distance with
the so-called Net and Prune paradigm [10]. The first
algorithms for computing kNN samples was the work
of Gardner and Sheehy using Delaunay refinement, but
was limited to Euclidean space [7]. The main algorith-
mic paradigm we use here is based on greedy orderings,
which have been used since the 1980’s for approximate
k-center clustering [6, 8]. The underlying data structure
is a variant of the sb structure of Clarkson [3, 2], which
was first analyzed for greedy orderings by Har-Peled and
Mendel [9].

2 Background

We will deal with finite subsets of metric spaces (X,d),
where the X is the set of points and d is the metric.
For x ∈ X and subsets S of X, we define

d(x, S) := min
s∈S

d(x, s).

The minimum distance to k points in S is denoted

dS,k(x) := min
U∈(S

k)
max
y∈U

d(x, y).

In particular, dS,1(x) = d(x, S). The Hausdorff dis-
tance, dH , is defined on subsets of X as

dH(A,B) := max{max
a∈A

d(a,B),max
b∈B

d(b, A)}.

A metric ball in S is the set of points of S within a
fixed radius of a point in S. A minimum r-cover of a set
S is the smallest set of centers of metric balls of radius r
whose union contains S. Equivalently, it is the smallest
subset C ⊂ S such that dH(S,C) ≤ r.

The doubling constant of a metric is the size of the
largest minimum r-cover of any ball of radius 2r. The
doubling dimension is the base-two logarithm of the
doubling constant. A bound on the doubling dimen-
sion allows one to apply the kind of packing arguments
as are often used in Euclidean space.

The spread ∆(P) of a finite metric P is the ratio of
the largest to smallest pairwise distances. The k-spread
is the ratio

∆k(P) :=
maxp,q∈P d(p, q)

minp∈P dP,k(p)
.

A set with spread ∆ in a metric with doubling dimension
d has at most O(∆d) points [9].

An r-packing is a set of points for which the minimum
pairwise distance is at least r. An r-packing that is also
an r-cover is called an r-net.

For a metric space X and a subset P , an (α, β)-kNN
sample of P is a subset M ⊆ P with the property that
for all x ∈ X,

αdP,k(x) ≤ dM,2(x) ≤ βdP,k(x).

We will refer to it simply as a kNN sample when the
values of α and β are not important. The algorithm in
this paper produces a (1/5, 2)-kNN sample.

Let P = (p1, . . . , pn) be an ordered subset of X. Let
Pi = {p1, . . . , pi} be the ith prefix. The ordering is
greedy if for all i ∈ 2, . . . , n, we have

d(pi+1, Pi) := dH(P, Pi).

In other words, every point pi+1 is the farthest point
from Pi. We will compute kNN-samples in a greedy
order. Both the data structure in Section 4 and the
algorithm in Section 5 will depend on this ordering for
their correctness and efficient running time.

3 A Simple Algorithm

We present a simple algorithm that generates an (α,
β)-kNN-sample as a subset of the input. It iteratively
builds M from P by adding a point p of P to M as long
as dP,k(p) ≤ 2dM,1(p). In this section, we prove that
any such algorithm produces a (1/5, 2)-kNN-sample.

Algorithm 1 kNNSample(P, k)

1: M ← ∅
2: while ∃p ∈ P such that dP,k(p) ≤ 2dM,1(p) do
3: Add p to M

return M

Theorem 1 Let P be a subset of a metric space X. Let
M = kNNSample(P, k) for some k ≥ 2. Then,

1

5
dP,k ≤ dM,2 ≤ 2dP,k.

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Proof. We first prove the lower bound on dM,2. Let
x ∈ P be any point. Let v1 and v2 be the two nearest
points to x in M , so,

dM,1(x) = d(x, v1) ≤ d(x, v2) = dM,2(x). (1)

Let v ∈ {v1, v2} be whichever point was added later by
the algorithm, which guarantees that

dP,k(v) ≤ 2d(v1, v2). (2)

We can now bound dP,k(x) as follows.

dP,k(x) ≤ dP,k(v) + d(v, x) [dP,k is 1-Lipschitz]

≤ 2d(v1, v2) + d(v, x) [by (2)]

≤ 2(d(v1, x) + d(x, v2)) + d(v, x) [triangle inequality]

≤ 5dM,2(x) [by (1)] .

Now, we prove the upper bound on dM,2. Suppose
for contradiction that there exists a point x ∈ X such
that dM,2(x) > 2dP,k(x). Let S be the k closest points
in P to x. Let r be the radius of the minimum enclos-
ing ball of S and note that r ≤ dP,k(x). If dM,1(s) < r
for some s ∈ S, then let m ∈ M be the nearest neigh-
bor of s in M . It follows from the triangle inequality
that d(x,m) ≤ d(x, s)+d(s,m) ≤ 2dP,k(x) < dM,2(x).
There can be only one point m ∈ M whose distance
to x is less than dM,2(x). However, if dM,1(s) < r
for all s ∈ S, then there would be a smaller minimum
enclosing ball for S centered at m, contradicting our
choice of r. So, for at least one point s∗ ∈ S, we have
dM,1(s∗) ≥ r. Therefore, by the triangle inequality,
dP,k(s∗) ≤ 2r ≤ 2dM,1(s∗). The existence of such a
point would cause the algorithm to add s∗ to M , contra-
dicting the assumption that M = kNNSample(P, k).
Thus, we conclude that no such x exists and indeed
dM,2 ≤ 2dP,k. �

In Sections 5 and 6, we explain how to efficiently test
this condition and bound the running time. Efficiency is
achieved by constructing the sample in a greedy order.
Note that the simplified algorithm does not rely on a
particular ordering.

4 A Cluster Graph

In this section we will define a graph on the a subset
of points that can be used to rapidly shrink the search
space when computing dP,k in the middle of our algo-
rithm. It is a variation on a data structure used in the
construction of the sb data structure of Clarkson [3].
Each vertex in the graph will be a point that we have
already added to our sample. Moreover, each vertex will
track the uninserted points that are closest to it. Every
time a new point is considered for addition, we use the

vertices adjacent to its nearest neighbor to search for
nearby points. The formal definition is given below.

Let P be a finite metric space, and let M ⊂ P be any
subset. The cluster of x ∈ M is the set of points Cx

in P that are closer to x than to any other point in M .
We break ties arbitrarily but consistently. The clusters
are discrete Voronoi cells.

The cluster graph GM on vertex set M has points a
and b adjacent if there exist a′ ∈ Ca and b′ ∈ Cb such
that

d(a′, b′) ≤ 2 max{d(a′, a),d(b′, b)}.

If a and b are adjacent, we denote this as a ∼ b. The
graph has self loops at every vertex. Because a′ ∈ Ca

and b′ ∈ Cb, the adjacency condition is equivalent to

d(a′, b′) ≤ max{2dM,1(a′), 2dM,1(b′)}.

So, if we wanted to try to add a′ to M , we could find
all the points within distance 2dM,1(a′) among the the
clusters of the vertices adjacent to a.

Moreover, we use the cluster graph to efficiently main-
tain itself under insertions. That is, we can use the
graph to quickly find the edges incident to a newly in-
serted point.

Lemma 2 Let M ⊂ P and let M ′ = M ∪ {a′} for
a′ ∈ Ca and a ∈M . If a′ ∼ c in GM ′ , then there exists
b ∈ M such that a ∼ b ∼ c in GM . In other words,
the neighbors of a′ will be found among the neighbors of
neighbors of a.

Proof. By the definition of adjacency in GM ′ there ex-
ist points b′ ∈ Ca′ and c′ ∈ Cc such that

d(b′, c′) ≤ 2 max{d(b′, a′),d(c′, c)}
≤ 2 max{d(b′, b),d(c′, c)},

where b is the nearest point to b′ in M as illustrated in
Figure 4. From this, it follows that b ∼ c in GM . Next,
observe that

d(a′, b′) ≤ d(b, b′) ≤ 2 max{d(b, b′),d(a, a′)}.

So, it immediately follows that a ∼ b in GM . �

Lastly, we would prefer to avoid the extensive check-
ing required to see if two points are adjacent. At first
sight, it seems to require searching for a pair that are
particularly close. Instead, we follow the example of
Clarkson [3] and prove a sufficient condition for bound-
ing the neighbors just by using the radii of the clusters
and the triangle inequality.

For a point x ∈M , define its radius to be

rad(x) = max
y∈Cx

d(y, x).

In other words, it is the distance from x to the farthest
point in its cluster.

32nd Canadian Conference on Computational Geometry, 2020

a

a’

b’

c

c’

b
Figure 4: Here, a′ ∈ Ca, b′ ∈ Cb, and c′ ∈ Cc. If
adding a′ would require creating an edge from a′ to
c, we will find c among the neighbors of neighbors of
a. The cluster of a′ is shown. The same pair (b′, c′)
that witnesses a cluster graph edge from a′ to c also
guarantees the existence of the edge from b to c.

Lemma 3 If a ∼ b in GM , then

d(a, b) ≤ rad(a) + rad(b) + 2 max{rad(a), rad(b)}.

Proof. If a ∼ b, then there exist points a′ ∈ Ca and
b′ ∈ Cb such that

d(a′, b′) ≤ 2 max{d(a, a′),d(b, b′)}.

We simply observe that d(a, a′) ≤ rad(a) and d(b, b′) ≤
rad(b), so the result follows from the triangle inequal-
ity. �

Using the lemma above, we can quickly check if an
edge ought to be removed from our cluster graph as
new points are added and radii decrease. It does mean
that the graph we store will contain more edges than
required. This distance condition is precisely what is
needed to bound the space usage as long as the points
are added in a greedy order.

Lemma 4 If M is a prefix of a greedy ordering of S ⊆
P , then the cluster graph on M has maximum degree
γ3, where γ is the doubling constant of the metric.

Proof. Let r be the maximum radius among all the
clusters in the cluster graph. By Lemma 3, if a ∼ b
in GM , then d(a, b) ≤ ra + rb + 2 max{ra, rb} ≤ 4r.
So, the neighbors of any point a ∈ M are contained in
ball(a, 4r). Because the points are added in a greedy
order, no two points of M have distance less than r. By
the definition of γ, the doubling constant, ball(a, 4r)
can be covered by γ3 balls of radius r/2. Each such ball
contains at most one point of M . Therefore, there are
at most γ3 neighbors. �

Corollary 5 Updating the neighbors of the vertices in
a cluster graph takes constant time per insertion in dou-
bling metrics if one adds points in a greedy order.

This last lemma and its corollary show the impor-
tance of using the greedy order. It makes the search
for nearby neighbors efficient. The algorithm described
in the following section will construct M in a greedy
order. This greedy order is also important to the effi-
ciency of the algorithm in other ways as we will see in
the analysis.

5 Efficiently Computing the GreedykNN Algorithm

The biggest challenge in implementing the simple algo-
rithm of Section 3 is that it requires computing or at
least bounding dM,2 and dP,k for every point.

As explained in Section 4, the main data structure is
a kind of discrete Voronoi diagram. For each inserted
point p, it has two parts: first, it stores the cluster Cp;
second, it stores the neighbors of p, the other inserted
points within some distance. This data structure will
be used to guarantee that the points in the output are
discovered in a greedy ordering.

The efficiency improvements in the algorithm over a
linear search are achieved by only searching locally in
the cluster graph. Thus, to prove the algorithm is cor-
rect, we need to show that it is sufficient to only search
the neighborhood graph in order to bound dP,k in terms
of dM,1.

After i points have been added, the inserted points
are denoted Mi and the cluster graph is denoted Gi.
The neighbors of a point q ∈ Mi in Gi are denoted
Ni(q). We include q itself in Ni(q) for all q ∈Mi.

If we consider adding a point p, but do not add it
because dP,k(p) > 2dM,1(p), then this condition will
continue to hold as we add more points to M . That is,
if we decide not to add p at time i, there will not later
come a time when we do want to add it. So, we can
safely remove this point from the data structure. We say
such a point is marked. In addition to the cluster graph,
we store for each point, a list of potentially near points
that have been marked. For a point p, we call this list
the nearby marked list of p and denote it markedpts(p).
These lists are used to correctly bound dP,k for new
points considered later in the algorithm (as explained
below).

The algorithm works as follows. Start by adding any
point to M . All points start unmarked. At step i + 1,
consider adding the farthest unmarked point p to any
point in Mi. A heap in the cluster graph makes it easy
to find this point. Let q = NNMi

(p) so p ∈ Cq. Count
the number of points in the ball B = ball(p, 2dMi,1(p))
by iterating over the clusters of q and its neighbors.
We also check the nearby marked list of p to count the
marked points in B. If there are at least k points in B,
then we add p to our kNN sample and continue.

If there are fewer than k points in B, then we mark
p and remove it from its cluster. For each of the points

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

B
p

Figure 5: When considering the addition of point p, we
count points in B = ball(p, 2dM,1(p)). These are all
among the cluster adjacent to the cluster containing p
and the list markedpts(p). The clusters are shown as
Voronoi cells as a visual aid.

in B that have not yet been added, they may have p
nearby when they are considered for insertion later. We
add p to the nearby marked list of each point in B. As
the following lemma shows, this combination of cluster
graph plus nearby marked lists is sufficient to enumerate
B.

Lemma 6 When considering the addition of a point
p ∈ Ca into Mj, the set of points P in B =
ball(p, 2dMj ,1(p)) is contained in(⋃

b∼a

Cb

)
∪ markedpts(p).

Proof. By the definition of the cluster graph, the clus-
ters adjacent to a contain all the points that can be
within 2dMj ,1(p) of p. However, some points q are re-
moved from the clusters if at some time i < j, they
were marked because dP,k(q) > 2dMi,1(q). Because the
points are considered for insertion in a greedy ordering,
we have that if q ∈ B, then

d(p, q) ≤ 2dMj ,1(p) ≤ 2dMi,1(q).

Therefore, q would have been added to markedpts(p) at
the time q was marked. �

6 Analysis

In this section we will show that the algorithm of Sec-
tion 5 computes a kNN sample in O(kn log ∆) time for
doubling metrics.

The key step of the analysis is to show that each point
is touched at most O(k) times before the insertion ra-
dius goes down by a constant factor. This is similar to

Har-Peled and Mendel’s analysis [9] of Clarkson’s algo-
rithm except that in our case a point may be considered
but not added. The volume packing argument is easily
adapted to this case with the loss of a factor of k in the
running time.

A point q is touched when considering insertion of a
point p if we compute d(p, q). The analysis depends on
counting these touches.

Lemma 7 A point b is touched at most O(k log ∆k(P))
times when computing the kNN sample of a doubling
metric P .

Proof. Partition the set of points that touch b into sets
Ai where the maximum radius in the cluster graph is in
the interval [2i, 2i+1) at the time of a touch from a ∈ Ai.
It will suffice to show that there are only O(k) points
in each Ai, because at most O(log(∆k(P))) sets Ai are
nonempty. Let Si be a 2i−1 covering of Ai. We have
|Ai| ≤ k|Si|, because if any point of Si had more than k
points of Ai in its ball of radius 2i−1, one of them would
have been inserted and therefore another of them would
have been considered for insertion at a time when the
radius is less than 2i, contradicting the assumption that
the point is in Ai.

Moreover, for all a ∈ Ai, d(a, b) ≤ 6 · 2i+1 by the
triangle inequality and the definition of edges in the
cluster graph. By the usual packing argument (see Har-
Peled and Mendel [9]), this implies that

|Ai| ≤ k|Si| ≤ kγdlog2 24e = O(k).

�

Theorem 8 Let P be a finite metric space with size n,
doubling dimension d, and spread ∆. The Greedy kNN
sampling algorithm runs time O(kn log ∆).

Proof. The algorithm has several different pieces that
must be analyzed separately. In the main loop, there are
some heap operations to find the next point to consider
for addition. This requires O(log n) time per point. The
local search requires touching all the points in a cluster
and its neighbors. This requires O(k log ∆k(P)) time
per point according to Lemma 7. It also requires touch-
ing all the points in the nearby marked list. As each
point is added to at most k − 1 such lists, there are
O(kn) touches of this type. By Corollary 5, updating
the cluster graph requires only constant time per ver-
tex. Because n = O(∆d), we have log n = O(log ∆).
Using the fact that ∆k ≤ ∆, the total running time is
O(kn log ∆). �

7 Software

We have implemented the GreedykNN algorithm and
integrated it into the greedypermutations python

32nd Canadian Conference on Computational Geometry, 2020

package. The code can be accessed at https://

github.com/donsheehy/greedypermutation and the
documentation at https://donsheehy.github.io/

greedypermutation/. The code can be installed with
pip by running the following from a command line.

pip install greedypermutation

Here are several examples of the code in use. We start
with an example of exponentially-spaced points.

from greedypermutation.knnsample import knnsample

P = [Point(1.2**i, 5) for i in range(10, 100)]

S_10 = list(knnsample(P,10))

Next, we show uniform points with k = 10.

P = [Point(i, 5) for i in range(10, 600, 10)]

S_10 = list(knnsample(P,10))

The next instance, with k = 20 is predictably twice as
sparse.

P = [Point(i, 5) for i in range(10, 600, 10)]

S_20 = list(knnsample(P,20))

8 Conclusion

This paper presented a simple greedy approach to com-
puting kNN samples that have distances between the
points bounded within a constant times the distance
to k points locally. This balances the desire to have a
geometrically nice sample, but also one whose density
varies with the underlying distribution.

There are several open problems that remain. First, it
is not known whether there are bounds on α and β that
are necessary for an (α, β)-kNN sample to exist. From
the results in this paper, we know that (1/5, 2)-kNN
samples exist for any finite metric space, but nothing is
known for larger α and smaller β. Also open is whether
one can efficiently compute a variation where one uses
dM,k′ for some k′ < k other than 2. It may be that one
can give a tighter approximation, but this question is
also open.

Another open question is whether or not there are
more efficient algorithms for implementing the simple
heuristic of Section 3. In particular, it may be possible
to cut out or reduce the factor of k. The reason this
seems possible is that it comes from enumerating rather
than just counting the points in the metric ball around
each point that are considered for addition.

References

[1] G. Biau and L. Devroye. Lectures on the Nearest
Neighbor Method. Springer Series in the Data Sciences.
Springer, 2015.

[2] K. L. Clarkson. Nearest neighbor queries in metric
spaces. Discrete & Computational Geometry, 22(1):63–
93, 1999.

[3] K. L. Clarkson. Nearest neighbor searching in metric
spaces: Experimental results for ‘sb(s)‘. Preliminary
version presented at ALENEX99, 2003.

[4] K. L. Clarkson. Nearest-neighbor searching and metric
space dimensions. In G. Shakhnarovich, T. Darrell, and
P. Indyk, editors, Nearest-Neighbor Methods for Learn-
ing and Vision: Theory and Practice, pages 15–59. MIT
Press, 2006.

[5] C. D. Cutler and D. A. Dawson. Estimation of dimen-
sion for spatially distributed data and related limit the-
orems. Journal of Multivariate Analysis, 28(1):115–148,
1989.

[6] M. Dyer and A. Frieze. A simple heuristic for the p-
centre problem. Operations Research Letters, 3(6):285–
288, 1985.

[7] K. Gardner and D. Sheehy. kth nearest neighbor sam-
pling in the plane. In Proceedings of the Canadian Con-
ference on Computational Geometry, 2016.

[8] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theor. Comput. Sci., 38:293–306,
1985.

[9] S. Har-Peled and M. Mendel. Fast construction of
nets in low dimensional metrics, and their applications.
SIAM Journal on Computing, 35(5):1148–1184, 2006.

[10] S. Har-Peled and B. Raichel. Net and prune: A lin-
ear time algorithm for euclidean distance problems. In
Proceedings of the 45th Annual ACM Symposium on
Theory of Computing, 2013.

[11] M. Izbicki and C. R. Shelton. Faster cover trees. In Pro-
ceedings of the Thirty-Second International Conference
on Machine Learning, 2015.

https://github.com/donsheehy/greedypermutation
https://github.com/donsheehy/greedypermutation
https://donsheehy.github.io/greedypermutation/
https://donsheehy.github.io/greedypermutation/

CCCG 2020, Saskatoon, Canada, August 5–7, 2020

Appendix

9 How small is the sample?

Ideally, one hopes that the sample M is much smaller than
P . If P has n points, then 2n/k points is the goal, having
2 points in the sample for k points in the input. Allowing
some constant factors we want |M | to be O(n/k). There
are clearly cases where this is achieved. For example, points
spaced uniformly on a line will have a kNN sample that is
uniformly spaced and has size O(n/k).

Unfortunately, there are also simple examples where a
kNN sample will be large. One such example is exponen-
tially spaced points on a line, such as {10i | i = 1, . . . , n}.

The size decrease is best understood in terms of the
measure induced by a kth nearest neighbor density esti-
mate. Let’s continue with one dimensional examples. Let
q : [0, 1]→ R be a density function for a measure

µ(B) :=

∫
x∈B

q(x)dx.

with total mass n, i.e. µ([0, 1]) = n.

The k-th nearest neighbor density estimate constructed
from P induces the following approximation to this measure.

µP,k(B) :=

∫
x∈B

k

dP,k(x)
dx.

Similarly, we get an estimate from M .

µM,2(B) :=

∫
x∈B

2

dM,2(x)
dx.

If M satisfies the kNN sampling lower bound αdP,k ≤ dM,2,
then we can relate the total mass of these measures

µM,2([0, 1]) =

∫ 1

0

2

dM,2(x)
dx

≤ 2

k

∫ 1

0

k

αdP,k(x)
dx

=
2

kα
µp,k([0, 1])

So, the total mass of the measure µM,2 is O(1/k) times
the total mass of µP,k. There is nothing special about the
line in this example and the same argument holds for other
measures induced by densities.

The the total mass of µM,2 gives an upper bound on the
number of points, i.e., |M | = O(µM,2([0, 1])). So, the num-
ber of points in a kNN sample is O(1/k) times the total
mass of µP,k. This means that if the kNN sample is large,
then the kNN density estimate was a bad approximation to
the true density. If that is the case, then using kth nearest
neighbors may have been a poor choice in the first place.

The moral of this story is that the kNN sample will have
size O(n/k) whenever the k-th nearest neighbor density es-
timate was a good approximation to the underlying measure
from which P was sampled.

10 A Python Implementation

The main kNNSample algorithm is described in the prose
of the paper. However, the algorithm is sufficiently simple
that we can include here the code from the Python imple-
mentation.

The cluster graph implementation is straightforward and
not shown here. The clusters are iterable and provide pop

method that returns their farthest point. The cluster graph
stores the clusters in a heap, ordered by their radius. It pro-
vides a nbrs of nbrs method that allows one to iterate over
all clusters within two hops of a given cluster. Because the
graph has self loops, this set includes cluster and its im-
mediate neighbors. The knnsample function is a generator,
so it yields points as they are added to the sample rather
than returning the final set.

Several small optimizations appear in the official release of
the code that have been removed here to show the essentials
of the algorithm. That said, the code below is complete and
has been tested.

from collections import defaultdict

from greedypermutation.clustergraph import ClusterGraph

def knnsample(M, k, seed = None):

G = ClusterGraph(M, nbrconstant = 2, moveconstant = 1)

markedpts = defaultdict(set)

Yield the first point.

yield G.heap.findmax().center

for i in range(1, len(M)):

cluster = G.heap.findmax()

point = cluster.pop()

G.heap.changepriority(cluster)

radius = 2 * point.dist(cluster.center)

nearbypts = {q for nbr in G.nbrs(cluster)

for q in nbr

if q.dist(point) <= radius

}

nearbymarkedpts = {q for q in markedpts[point]

if q.dist(point) <= radius

}

if len(nearbypts) + len(nearbymarkedpts) < k:

for p in nearbypts:

markedpts[p].add(point)

else:

G.addcluster(point, cluster)

yield point

	Introduction
	Related Work

	Background
	A Simple Algorithm
	A Cluster Graph
	Efficiently Computing the GreedykNN Algorithm
	Analysis
	Software
	Conclusion
	How small is the sample?
	A Python Implementation

