Achieving Spatial Adaptivity in Approximate Nearest Neighbor Search

Jonathan Derryberry, Don Sheehy, Daniel Sleator, and Maverick Woo
\(p \) is a \(c \)-approximate nearest neighbor of \(q \) if
\[
d(q, p) < c \, d(q, \text{NN}(q)).
\]
\(p \) is a \(c \)-approximate nearest neighbor of \(q \) if
\[
d(q, p) < c \cdot d(q, \text{NN}(q)).
\]

Goals
- \(O(\log n) \) queries
p is a c-approximate nearest neighbor of q if
\[d(q, p) < c \cdot d(q, \text{NN}(q)). \]

Goals
- $O(\log n)$ queries
- $O(d^{3/2})$-approximation
\(p \) is a \(c \)-approximate nearest neighbor of \(q \) if
\[
d(q, p) < c \ d(q, \text{NN}(q)).
\]

Goals
- \(O(\log n) \) queries
- \(O(d^{3/2}) \)-approximation
- Spatially Adaptive
Dynamic Finger Property:
Query time is $O(\log(\delta(p, q)))$
• where p is the previous query result.
• q is the current query.
• $\delta(p,q)$ is the number of input points between p and q.
Finger search pretty well solved in 1D
[pointer machine: Brodal et al],[RAM, Andersson & Thorup]
Skip lists work.

Finger search pretty well solved in 1D

[pointer machine: Brodal et al],[RAM, Andersson & Thorup]
Previous Work in 2D

- Proximate Point Search [Demaine, Iacono, and Langerman, ’02/’04]
- Proximate Point Location [Iacono and Langerman ’03]
This work.

- $O(d^{3/2})$ ANN in \mathbb{R}^d
- $O(d^2 \log(\delta(p,q)))$ queries. (*Finger Search!*)
- $O(dn)$ space.
- $O(d^2 n \log n)$ preprocessing time
This work.

- $O(d^{3/2})$ ANN in R^d
- $O(d^2 \log(\delta(p,q)))$ queries. (Finger Search!)
- $O(dn)$ space.
- $O(d^2 n \log n)$ preprocessing time
Result of last query
Result of last query

New query
\(\delta(p, q) = \# \text{ of input points in this box.} \)
\((11111, 00000)\) → \(1010101010\)
$(11111, 00000)

\downarrow

101010101010
(11111, 00000) → 1010101010
(11111, 00000)

\[\downarrow \]

1010101010
The placement of the origin matters.
A classic $O(d^{3/2})$-ANN Algorithm:
[Bern93, Chan98, Liao01 et al]

Put the input points in your favorite 1-dimensional data structure, ordered by the Z-order.

Construct $d+1$ of these data structures, such that all points inserted into the i^{th} are shifted by $(i/d+1) \times$ diameter in every coordinate.

For each query, search all $d+1$ data structures for a nearest neighbor in the shifted Z-order. Return the one that is closest in \mathbb{R}^d.
Lemma [Chan]: With at least $d+1$ shifts, at most 1 is “bad” for each dimension.
Lemma [Chan]: With at least $d+1$ shifts, at most 1 is “bad” for each dimension.

So x and NN_x share a small QT cell.
Are we done?

Z-order reduces d-dimensions to 1-dimension.

It works for ANN.

Finger Search in 1-dimension is solved.
Making it work.

1. Use 2d+1 1D data structures that support finger search.
2. Run all 2d+1 searches in parallel.
3. Stop when d+1 are finished.
4. Return the best answer among the d+1 that finished.
5. Manually update the finger pointers in all 2d+1 structures.
If q and NN_q are in a small QT box relative to their distance then the approximation is good.
If q and NN_q are in a small QT box relative to their distance then the approximation is good.

If p and q are in a small QT box relative to their distance then the runtime is good.
If \(q \) and \(\text{NN}_q \) are in a small QT box relative to their distance then the approximation is good.

We apply the Chan Lemma twice.

- Since at most \(d \) are bad for \(p \) and \(q \), we can stop after all but \(d \) finish and the runtime is good.
- Since \(d+1 \) are left over, at least one will be a good approximation.
Summary

A new data structure.

- $O(d^{3/2})$ ANN in \mathbb{R}^d
- $O(d^2 \log(\delta(p,q)))$ queries. (Finger Search!)
- $O(dn)$ space.
- $O(d^2 n \log n)$ preprocessing time
Thank you.
Thank you.

Questions?