Searching for the center.

Don Sheehy
CMU Theory Lunch
October 8, 2008
It’s a fine line between stupid and clever.
The Divide and Conquer Game
How to win

The Divide and Conquer Game
The Divide and Conquer Game

How to win

Pick a center point.
The Divide and Conquer Game

How to win

Pick a center point.

Given a set $S \subset \mathbb{R}^d$, a *center point* p is a point such that every closed halfspace with p on its boundary contains at least $\frac{n}{d+1}$ points of S.
Some definitions you probably already know.
Linear: $\sum_{p_i \in P} c_i p_i$
Linear: \[\sum_{p_i \in P} c_i p_i \]

Nonnegative: \[c_i \geq 0 \]
Linear: $\sum_{p_i \in P} c_i p_i$

Nonnegative: $c_i \geq 0$

Affine: $\sum c_i = 1$
Linear: \[\sum_{p_i \in P} c_i p_i \]

Nonnegative: \[c_i \geq 0 \]

Affine: \[\sum c_i = 1 \]

Convex: Affine and Nonnegative
Radon \Rightarrow Helly \Rightarrow Center Points Exist.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d + 2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.
Radon’s Theorem

If \(P \in \mathbb{R}^d \) has \(d+2 \) (or more) points then there is a partition of \(P \) into \((U, \overline{U})\) such that \(\text{conv}(U) \cap \text{conv}(\overline{U}) \) is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.
Radon’s Theorem

If \(P \in \mathbb{R}^d \) has \(d+2 \) (or more) points then there is a partition of \(P \) into \((U, \overline{U}) \) such that \(\text{conv}(U) \cap \text{conv}(\overline{U}) \) is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $conv(U) \cap conv(\overline{U})$ is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.

\[
\sum_{i=1}^{d+2} c_i p_i = 0
\]

\[
\sum_{i=1}^{d+2} c_i = 0
\]
Radon’s Theorem

If $P \in \mathbb{R}^d$ has $d+2$ (or more) points then there is a partition of P into (U, \overline{U}) such that $\text{conv}(U) \cap \text{conv}(\overline{U})$ is nonempty.

$I^+ = \{i : c_i > 0\}$
$I^- = \{i : c_i < 0\}$

$$\sum_{i=1}^{d+2} c_i p_i = 0$$

$$\sum_{i \in I^+} c_i p_i = \sum_{i \in I^-} (-c_i) p_i$$

$$\sum_{i=1}^{d+2} c_i = 0$$
Radon’s Theorem

If \(P \in \mathbb{R}^d \) has \(d+2 \) (or more) points then there is a partition of \(P \) into \((U, \overline{U})\) such that \(\text{conv}(U) \cap \text{conv}(\overline{U}) \) is nonempty.

\[
\sum_{i=1}^{d+2} c_i p_i = 0
\]

\[
\sum_{i \in I^+} c_i = 0
\]

\[
\sum_{i \in I^-} c_i = \sum_{i \in I^-} (-c_i)
\]

\[
\sum_{i \in I^+} c_i p_i = \sum_{i \in I^-} (-c_i) p_i
\]

\[
I^+ = \{i : c_i > 0\}
\]

\[
I^- = \{i : c_i < 0\}
\]
Radon’s Theorem

If \(P \in \mathbb{R}^d \) has \(d+2 \) (or more) points then there is a partition of \(P \) into \((U, \overline{U})\) such that \(\text{conv}(U) \cap \text{conv}(\overline{U}) \) is nonempty.

\[
I^+ = \{i : c_i > 0\} \\
I^- = \{i : c_i < 0\}
\]

\[
d + 2 \sum_{i=1}^{d+2} c_i p_i = 0 \\
d + 2 \sum_{i=1}^{d+2} c_i = 0 \\
\sum_{i \in I^+} c_i p_i = \sum_{i \in I^-} (-c_i) p_i \\
\sum_{i \in I^+} c_i = \sum_{i \in I^-} (-c_i) \\
x = \sum_{i \in I^+} \left(\frac{c_i}{\sum_{j \in I^+} c_j} \right) p_i = \sum_{i \in I^-} \left(\frac{-c_i}{\sum_{j \in I^-} c_j} \right) p_i
\]
Helly’s Theorem

Given some convex sets in \mathbb{R}^d such that every $d + 1$ sets have common intersection, then the whole collection of sets has a common intersection.
Helly’s Theorem

Given some convex sets in \mathbb{R}^d such that every $d + 1$ sets have common intersection, then the whole collection of sets has a common intersection.
Helly’s Theorem

Given some convex sets in \mathbb{R}^d such that every $d + 1$ sets have common intersection, then the whole collection of sets has a common intersection.
Proof Hint: Use Radon’s Theorem!
Fun Exercise:
Show that the Radon Point is in every set.
More than $d+2$ sets?
The Center Point Theorem

Consider the set of all minimal halfspaces containing at least \(\frac{dn}{d+1} + 1 \) points.

Observe that every \(d + 1 \) have a common intersection.

Helly’s Theorem implies that all the halfspaces have a common intersection. The intersection is the set of center points.
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$.
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$.
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$.
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$.
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$.
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$
Tverberg’s Theorem

Let S be a set of at least $(d + 1)(r - 1) + 1$ points in \mathbb{R}^d. There exists a partition of S into r subsets X_1, \ldots, X_r such that $\bigcap_{i=1}^{r} \text{conv}(X_i) \neq \emptyset$

Choose $r = n/(d+1)$

It’s a center point!
Proof via Helly’s Theorem

Proof via Tverberg’s Theorem
Proof via Helly’s Theorem

coNP

Proof via Tverberg’s Theorem

NP
An Algorithm
Approximating Center Points with Iterated Radon Points
[Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993]
Approximating Center Points with Iterated Radon Points
[Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993]

1. Randomly sample points into sets of d+2.
2. Compute the Radon point for each set.
3. Compute the Radon points of the Radon points
4. Continue until only one point remains.
5. Return that point.
Approximating Center Points with Iterated Radon Points
[Clarkson, Eppstein, Miller, Sturtivant, Teng, 1993]

1. Randomly sample points into sets of \(d+2 \).
2. Compute the Radon point for each set.
3. Compute the Radon points of the Radon points.
4. Continue until only one point remains.
5. Return that point.

\[O \left(\frac{n}{d^2} \right) \]-center with high probability.
Analysis looks like Helly-type proof.

Look at all projections to one dimension at the same time.
Let’s build an algorithm so that the analysis will look less like Helly and more like Tverberg.
This almost works.
Analysis: How good is the resulting center point?
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points.
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points. Suppose for contradiction that $g_n < \frac{n}{(d+1)^2}$.
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points.

Suppose for contradiction that $g_n < \frac{n}{(d+1)^2}$.

Then, $g_n/2 < \frac{n}{2(d+1)^2}$ and the corresponding partition uses less than $\frac{n}{2(d+1)}$ points.
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points.

Suppose for contradiction that $g_n < \frac{n}{(d+1)^2}$.

Then, $g_n/2 < \frac{n}{2(d+1)^2}$ and the corresponding partition uses less than $\frac{n}{2(d+1)}$ points.

So, with n points, we can construct $d + 2$ points with partitions of size $g_n/2$.
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points.

Suppose for contradiction that $g_n < \frac{n}{(d+1)^2}$.

Then, $g_n/2 < \frac{n}{2(d+1)^2}$ and the corresponding partition uses less than $\frac{n}{2(d+1)}$ points.

So, with n points, we can construct $d + 2$ points with partitions of size $g_n/2$.

This means we can iterate the algorithm, and $g_n \geq 2g_n/2$.
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points.

Suppose for contradiction that $g_n < \frac{n}{(d+1)^2}$.

Then, $g_{n/2} < \frac{n}{2(d+1)^2}$ and the corresponding partition uses less than $\frac{n}{2(d+1)}$ points.

So, with n points, we can construct $d + 2$ points with partitions of size $g_{n/2}$.

This means we can iterate the algorithm, and

$g_n \geq 2g_{n/2}$

Base case: $g_{d+2} = 2$.
Analysis: How good is the resulting center point?

Say g_n is the minimum guaranteed partition size on n points.

Suppose for contradiction that $g_n < \frac{n}{(d+1)^2}$.

Then, $g_{n/2} < \frac{n}{2(d+1)^2}$ and the corresponding partition uses less than $\frac{n}{2(d+1)}$ points.

So, with n points, we can construct $d + 2$ points with partitions of size $g_{n/2}$.

This means we can iterate the algorithm, and $g_n \geq 2g_{n/2}$.

Base case: $g_{d+2} = 2$. $\implies g_n \geq 2^{\log \frac{n}{d+2}} = \frac{n}{d + 2}$