Cone Depth and the Center Vertex Theorem

- Gary Miller
- Todd Phillips
- Don Sheehy
Let P be n points in \mathbb{R}^d.

A center point is a point c (not necessarily in P) such that every closed half space containing c contains at least $n/d + 1$ points of P.

Center points always exist. [Danzer et al, ’63]
Let P be n points in \mathbb{R}^d

A *center point* is a point c (not necessarily in P) such that every closed half space containing c contains at least $n/d + 1$ points of P.

Center points always exist. [Danzer et al, '63]
Let P be n points in \mathbb{R}^d

A *center point* is a point c (not necessarily in P) such that every closed half space containing c contains at least $\frac{n}{d}+1$ points of P.

Center points always exist. [Danzer et al, ’63]
Let P be n points in \mathbb{R}^d.

A *center point* is a point c (not necessarily in P) such that every closed half space containing c contains at least $n/d + 1$ points of P.

Center points always exist. [Danzer et al, ’63]
Let P be n points in R^d.

A *center point* is a point c (not necessarily in P) such that every closed half space containing c contains at least $n/d+1$ points of P.

Center points always exist. [Danzer et al, ’63]
The **Tukey Depth** of x is the minimum number of points in any half space containing x.

$$TD(x) = \min_{\|v\|=1} |\{p \in P \mid (p-x)v > 0\}|$$
The Tukey Depth of x is the minimum number of points in any half space containing x.

$$TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}|$$
The **Tukey Depth** of x is the minimum number of points in any half space containing x.

$$TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}|$$
The **Tukey Depth** of \(x \) is the minimum number of points in any half space containing \(x \).

\[
TD(x) = \min_{\|v\|=1} \left| \{ p \in P \mid (p-x)v > 0 \} \right|
\]
The **Tukey Depth** of \(x \) is the minimum number of points in any half space containing \(x \).

\[
TD(x) = \min_{||v||=1} |\{ p \in P \mid (p-x)v > 0 \}|
\]
The **Tukey Depth** of \(x \) is the minimum number of points in any half space containing \(x \).

\[
TD(x) = \min_{\|v\| = 1} \{p \in P \mid (p-x)v > 0\}
\]
The **Tukey Depth** of x is the minimum number of points in any half space containing x.

$$TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}|$$
The **Tukey Depth** of x is the minimum number of points in any half space containing x.

$$TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}|$$
The **Tukey Depth** of \(x \) is the minimum number of points in any half space containing \(x \).

\[
TD(x) = \min_{\|v\|=1} |\{p \in P \mid (p-x)v > 0\}|
\]
• Simplicial depth
• Convex hull peeling
• Regression Depth
• k-order α-hulls
• Travel Depth
• many others
When points are in convex position, the Tukey depth of every \(p \) in \(P \) is 1.

Can we pick a center from \(P \)?
Can we pick a center from P?

When points are in convex position, the Tukey depth of every p in P is 1.
Intuition: Narrow the field of view.

\[TD(x) = \min_{||v||=1} |\{ p \in P \mid (p-x)v > 0 \}| \]

\[CD(x) = \min_{||v||=1} |\{ p \in P \mid \frac{(p-x)v}{||p-x||} > c \}| \]
Intuition: Narrow the field of view.

\[TD(x) = \min_{\|v\|=1} |\{p \in P \mid (p-x)v > 0\}| \]

\[CD(x) = \min_{\|v\|=1} |\{p \in P \mid \frac{(p-x)v}{\|p-x\|} > c\}| \]
Intuition: Narrow the field of view.

$$TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}|$$

$$CD(x) = \min_{||v||=1} |\{p \in P \mid \frac{(p-x)v}{||p-x||} > c\}|$$
Intuition: Narrow the field of view.

\[TD(x) = \min_{\|v\| = 1} |\{ p \in P \mid (p-x)v > 0 \}| \]

\[CD(x) = \min_{\|v\| = 1} |\{ p \in P \mid \frac{(p-x)v}{\|p-x\|} > c \}| \]
Intuition: Narrow the field of view.

\[TD(x) = \min_{\|v\|=1} |\{ p \in P \mid (p-x)v > 0 \}| \]

\[CD(x) = \min_{\|v\|=1} |\{ p \in P \mid \frac{(p-x)v}{\|p-x\|} > c \}| \]
Intuition: Narrow the field of view.

\[TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}| \]

\[CD(x) = \min_{||v||=1} |\{p \in P \mid \frac{(p-x)v}{||p-x||} > c\}| \]
Intuition: Narrow the field of view.

\[TD(x) = \min_{||v||=1} |\{p \in P \mid (p-x)v > 0\}| \]

\[CD(x) = \min_{||v||=1} |\{p \in P \mid \frac{(p-x)v}{||p-x||} > c\}| \]

For this talk: cones have half-angle 45°
a center vertex is a point \(p \in P \) such that \(CD(p) \geq n/d+1 \).

Thm: For all \(P \subset \mathbb{R}^d \), there exists a center vertex.

Pf: Pick \(p \in P \) closest to a center point.
a center vertex is a point \(p \in P \) such that \(CD(p) \geq n/d + 1 \).

Thm: For all \(P \subset \mathbb{R}^d \), there exists a center vertex.

Pf: Pick \(p \in P \) closest to a center point.
a center vertex is a point $p \in P$ such that $CD(p) \geq n/d + 1$.

Thm: For all $P \subset \mathbb{R}^d$, there exists a center vertex.

Pf: Pick $p \in P$ closest to a center point.
a *center vertex* is a point $p \in P$ such that $CD(p) \geq n/d + 1$.

Thm: For all $P \subset R^d$, there exists a center vertex.

Pf: Pick $p \in P$ closest to a center point.
a *center vertex* is a point $p \in P$ such that $CD(p) \geq n/d + 1$.

Thm: For all $P \subset R^d$, there exists a center vertex.

Pf: Pick $p \in P$ closest to a center point.
a *center vertex* is a point \(p \in P \) such that \(CD(p) \geq n/d + 1 \).

Thm: For all \(P \subseteq R^d \), there exists a center vertex.

Pf: Pick \(p \in P \) closest to a center point.
a center vertex is a point \(p \in P \) such that \(CD(p) \geq n/d+1 \).

Thm: For all \(P \subset R^d \), there exists a center vertex.

Pf: Pick \(p \in P \) closest to a center point.
a center vertex is a point $p \in P$ such that $CD(p) \geq n/d + 1$.

Thm: For all $P \subset \mathbb{R}^d$, there exists a center vertex.

Pf: Pick $p \in P$ closest to a center point.
a *center vertex* is a point \(p \in P \) such that \(CD(p) \geq n/d + 1 \).

Thm: For all \(P \subset \mathbb{R}^d \), there exists a center vertex.

Pf: Pick \(p \in P \) closest to a center point.
a **center vertex** is a point $p \in P$ such that $CD(p) \geq n/d + 1$.

Thm: For all $P \subset \mathbb{R}^d$, there exists a center vertex.

Pf: Pick $p \in P$ closest to a center point.
a *center vertex* is a point \(p \in P \) such that \(CD(p) \geq n/d + 1 \).

Thm: For all \(P \subset R^d \), there exists a center vertex.

Pf: Pick \(p \in P \) closest to a center point.
In \mathbb{R}^d, the idea is the same.

Pick the right hyperplane through the center point, c.

Show that the bounded part of the cone is empty.

The "right" hyperplane is the one that intersects the cone at a hyperellipsoid centered at c.
In \mathbb{R}^d, the idea is the same. Pick the right hyperplane through the center point, c.

Show that the bounded part of the cone is empty.

The “right” hyperplane is the one that intersects the cone at a hyperellipsoid centered at c.
In \mathbb{R}^d, the idea is the same.

Pick the right hyperplane through the center point, c.

Show that the bounded part of the cone is empty.

The “right” hyperplane is the one that intersects the cone at a hyperellipsoid centered at c.
In \mathbb{R}^d, the idea is the same.

Pick the right hyperplane through the center point, c.

Show that the bounded part of the cone is empty.

The “right” hyperplane is the one that intersects the cone at a hyperellipsoid centered at c.
Beyond the plane

In \mathbb{R}^d, the idea is the same.

Pick the right hyperplane through the center point, c.

Show that the bounded part of the cone is empty.

The “right” hyperplane is the one that intersects the cone at a hyperellipsoid centered at c.
In \mathbb{R}^d, the idea is the same.

Pick the right hyperplane through the center point, c.

Show that the bounded part of the cone is empty.

The “right” hyperplane is the one that intersects the cone at a hyperellipsoid centered at c.
Let p_k be the k-th nearest point to c.

$$CD(p_k) \geq (n/d+1) - (k-1)$$

So, $p_1, \ldots, p_{n/2(d+1)}$ have depth at least $n/2(d+1)$.

Thus, the average depth is at least
$$n/4(d+1)^2 = O(n).$$
Let p_k be the k-th nearest point to c.

$CD(p_k) \geq (n/d+1) - (k-1)$

So, $p_1, \ldots, p_{n/2(d+1)}$ have depth at least $n/2(d+1)$.

Thus, the average depth is at least $n/4(d+1)^2 = O(n)$.
Let p_k be the k-th nearest point to c.

\[CD(p_k) \geq (n/d+1) - (k-1) \]

So, $p_1, \ldots, p_{n/2(d+1)}$ have depth at least $n/2(d+1)$.

Thus, the average depth is at least $n/4(d+1)^2 = O(n)$.
Let p_k be the k-th nearest point to c.

$$CD(p_k) \geq \frac{n}{d+1} - (k-1)$$

So, $p_1, ..., p_{n/2(d+1)}$ have depth at least $n/2(d+1)$.

Thus, the average depth is at least

$$n/4(d+1)^2 = O(n).$$
Let \(p_k \) be the \(k \)-th nearest point to \(c \).

\[
CD(p_k) \geq (n/d+1) - (k-1)
\]

So, \(p_1, \ldots, p_{n/2(d+1)} \) have depth at least \(n/2(d+1) \).

Thus, the average depth is at least

\[
n/4(d+1)^2 = O(n).
\]
Let p_k be the k-th nearest point to c.

$$CD(p_k) \geq \left(\frac{n}{d} + 1\right) - (k-1)$$

So, $p_1, \ldots, p_{n/2(d+1)}$ have depth at least $n/2(d+1)$.

Thus, the average depth is at least $\frac{n}{4(d+1)^2} = O(n)$.
Some open questions.

- Is 45° the largest cone half-angle for which a center vertex *always* exists?
- How fast can we compute the cone depth of a point in space?
- How fast can we find a center vertex deterministically.
Thanks.