
Greedy Permutations and Finite Voronoi Diagrams
Oliver A. Chubet #

North Carolina State University, Raleigh, NC, USA

Paul Macnichol #

North Carolina State University, Raleigh, NC, USA

Parth Parikh #

North Carolina State University, Raleigh, NC, USA

Donald R. Sheehy # Ñ

North Carolina State University, Raleigh, NC, USA

Siddharth S. Sheth #

North Carolina State University, Raleigh, NC, USA

Abstract
We illustrate the computation of a greedy permutation using finite Voronoi diagrams. We describe
the neighbor graph, which is a sparse graph data structure that facilitates efficient point location to
insert a new Voronoi cell. This data structure is not dependent on a Euclidean metric space. The
greedy permutation is computed in O(n log ∆) time for low-dimensional data using this method [4, 6].

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases greedy permutation, Voronoi diagrams

Digital Object Identifier 10.4230/LIPIcs.SoCG.2023.64

Category Media Exposition

Supplementary Material Audiovisual: https://youtu.be/zMlpHV6Y1SM

Funding This research was supported by the NSF under grant CCF-2017980.

1 Introduction

Given a finite metric space X, and a subset P , there is a natural decomposition of X into
Voronoi cells defined for each p ∈ P as

V(p) := {x ∈ X | d(x, p) = d(x, P )}

This is a discrete analog of the Voronoi diagrams studied in geometry.
The most glaring difference between finite Voronoi diagrams and, say, Euclidean Voronoi

diagrams is that there is no natural dual (i.e., no Delaunay triangulation) that connects
neighboring cells. To store some local structure, a finite Voronoi diagram is endowed with a
neighbor graph G. The requirement is that if there are two cells V(a) and V(b) such that
inserting a new point a′ ∈ V(a) will cause some points to move from V(b) to the newly formed
V(a′), then ab is an edge of G. In other words, G stores sufficient information to perform an
incremental insertion of a new cell. The movement of points into a new cell is called point
location. The neighbor graph also stores all the information needed to update itself efficiently
after an insertion.

Greedy permutations, also known as farthest point traversals) are a standard way to
provide a sequence of good samples of a metric space at different scales. The points are
ordered so that each point is the farthest among the remaining points. We describe a simple,
deterministic algorithm to compute greedy permutations.

© Oliver A. Chubet, Paul Macnichol, Parth Parikh, Donald R. Sheehy, and
Siddharth S. Sheth;
licensed under Creative Commons License CC-BY 4.0

39th International Symposium on Computational Geometry (SoCG 2023).
Editors: Erin W. Chambers and Joachim Gudmundsson; Article No. 64; pp. 64:1–64:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oachubet@ncsu.edu
https://orcid.org/0000-0002-4771-9894
mailto:Pemacnic@ncsu.edu
mailto:pmparikh@ncsu.edu
mailto:don.r.sheehy@gmail.com
https://donsheehy.net/
https://orcid.org/0000-0002-9177-2713
mailto:ssheth4@ncsu.edu
https://doi.org/10.4230/LIPIcs.SoCG.2023.64
https://youtu.be/zMlpHV6Y1SM
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


64:2 Greedy Permutations and Finite Voronoi Diagrams

Figure 1 The geometric Voronoi cells cover the points in the cells of the finite Voronoi diagram.

2 Greedy Permutations

The greedy permutation, or the farthest first traversal, is a powerful heuristic used to
approximate many hard problems since 1977 from TSP [5] to k-center clustering [3, 2]. Let
P = (p0, . . . , pn−1) be a finite sequence of points in a metric space with distance d. The
ith-prefix is the set Pi = {p0, . . . , pi−1} containing the first i points of P . The sequence P is
a greedy permutation if for all i,

d(pi, Pi) = max
p∈P

d(p, Pi).

The point p0 ∈ P is the seed of the greedy permutation and may be chosen arbitrarily. A
greedy permutation can be computed in O(n log ∆) time for low-dimensional data [4, 6]. An
O(n log n)-time randomized approximation algorithm exists [4], but, to our knowledge, it
has never been implemented.

3 Finite Voronoi Diagram

A finite Voronoi diagram consists of the cells V(p) and a neighbor graph G. It can be
constructed incrementally as follows. It starts with a single cell containing all the points.
We insert a point p′ ∈ V(p) by constructing V(p′) as a subset of the points V(q) where q is a
neighbor of p. We then update the neighbor graph by selecting neighbors of V(p′) among
the neighbors of neighbors of p. There is a final step in which we prune excess edges that
are clearly no longer needed in the neighbor graph. This maintains sparsity of the neighbor
graph, resulting in efficient point location.

4 Point Location

An obvious disadvantage of finite Voronoi diagrams as compared to their geometric cousins
is that the points of the cell must be explicitly enumerated and moved when there is an
insertion. The analysis of Clarkson’s algorithm by Har-Peled and Mendel [4] counts the
number of times that each point is considered for moving. They show that by a standard



O. A. Chubet, P. Macnichol, P. Parikh, D. R. Sheehy, and S. S. Sheth 64:3

Figure 2 We depict the finite Voronoi cells by drawing the convex hull of the points it contains.

packing argument, only a constant number (i.e., 2O(d)) of points can touch a given point
before the maximum distance of the farthest point from the center of a cell goes down by at
least half. It follows immediately that each point is touched at most 2O(d) log ∆ times.

5 Incremental Construction of Finite Voronoi Diagrams

An incremental construction inserts the points one at a time, updating the cells and a
neighbor graph. Let (X, d) be a metric space and a let P ⊆ X be a finite subset. The points
of X are partitioned into cells V(p), where p ∈ P . The cells of a finite Voronoi diagram
satisfy the following invariant.

The Cell Invariant: For all p ∈ P and all p′ ∈ V(q), d(p, p′) = minq∈P d(p′, q).

The cell invariant says that if a′ ∈ V(a), then a is a nearest neighbor of a′ among the
points of P . If we insert a′ into the finite Voronoi diagram, then we add a′ to P . The point
a is called the parent of a′. To recover the cell invariant after an insertion, points from
other cells are moved into the new cell in a process called point location. For a cell V(q), its
out-radius is Rq := maxa∈V(q) d(q, a).

In addition to the cells, we also maintain the neighbor graph on P that allows point
location to be performed locally. That is, there is an edge from a to b if inserting a new point
into P from V(a) would require a point from V(b) to be moved (or vice versa). Formally, the
neighbor graph maintains the following invariant.

The Neighbor Invariant: For all cells V(a) and V(b), if there exist points a′ ∈ V(a)
and b′ ∈ V(b) such that d(a′, b′) < d(b′, b), then there is an edge from a to b.

Suppose we are inserting a′ with parent a. The neighbor invariant directly implies that
every point b′ that must move into a new cell centered at a point a′ is contained in a cell
V(b), where b is a neighbor of a. Thus, point location only requires iterating over the cells of
the neighbors of a to find all the points that will move into the newly constructed V(a′).

To avoid excess distance computations, the stored neighbor graph contains some edges
that are not strictly required by the neighbor invariant. After inserting a′, the neighbors

SoCG 2023



64:4 Greedy Permutations and Finite Voronoi Diagrams

Figure 3 The neighbor graph during the finite Voronoi diagram construction.

Figure 4 From left two right, we see two two iterations of the incremental finite Voronoi diagram
construction.

are selected from point a, the neighbors of a, and the neighbors of the neighbors of a. One
can simply add edges from a′ to each of these points. Any graph that satisfies the neighbor
invariant will continue to satisfy the neighbor invariant after this “neighbors of neighbors”
update to support insertions.

As Clarkson observed [1], it is possible to use the triangle inequality to identify edges
that are too long. Specifically, if the out-radii of two cells V(a) and V(b) are Ra and Rb

respectively, then if the neighbor invariant requires an edge from a to b, then d(a, b) ≤
Ra + Rb + max{Ra, Rb}. Edges longer than this length can be pruned from the neighbor
graph.

So, inserting a new point a′ with parent a into a finite Voronoi diagram has three steps:

1. Compute V(a′) by moving points from cells of neighbors of a.

2. Compute the neighbors of a′ by iterating over neighbors of neighbors of a.

3. Prune the edges incident to any point whose cell or neighbors changed.

By the analysis of Har-Peled and Mendel [4], the total point location cost is at most
2O(d)n log ∆. Storing points in a cell as a max-heap keyed by distance from the center gives
ready access to the cell’s out-radius. Heaps are updated for all cells which are modified in an
iteration. If centers are added in a greedy fashion, it follows from a packing argument that
the degree of a vertex in the neighbor graph is 2O(d). So, the heap operations per iteration
cost 2O(d) log n. Updating the neighbor graph also takes 2O(d) time per iteration. Therefore,
a finite Voronoi diagram can be computed in 2O(d)n log ∆ time.



O. A. Chubet, P. Macnichol, P. Parikh, D. R. Sheehy, and S. S. Sheth 64:5

References
1 Kenneth L. Clarkson. Nearest neighbor queries in metric spaces. Discrete & Computational

Geometry, 22(1):63–93, 1999.
2 M.E Dyer and A.M Frieze. A simple heuristic for the p-centre problem. Operations Research

Letters, 3(6):285–288, 1985. doi:10.1016/0167-6377(85)90002-1.
3 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical

Computer Science, 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.
4 Sariel Har-Peled and Manor Mendel. Fast construction of nets in low dimensional metrics,

and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.
5 Daniel J Rosenkrantz, Richard E Stearns, and Philip M Lewis, II. An analysis of several

heuristics for the traveling salesman problem. SIAM journal on computing, 6(3):563–581, 1977.
6 Donald R. Sheehy. greedypermutations. https://anonymous.4open.science/r/greedypermutation-

C50B, 2020.

SoCG 2023

https://doi.org/10.1016/0167-6377(85)90002-1
https://doi.org/10.1016/0304-3975(85)90224-5

	1 Introduction
	2 Greedy Permutations
	3 Finite Voronoi Diagram
	4 Point Location
	5 Incremental Construction of Finite Voronoi Diagrams

